

Offshore Wind Farm

Electro-Magnetic Fields Technical Statement

Document Reference: 9.39 Volume: 9

April 2025 Date:

Revision: 0

Project Reference: EN010119

Project	North Falls Offshore Wind Farm
Document Title	Electro-Magnetic Fields Technical Statement
Document Reference	9.39
Supplier	Blake Clough
Supplier Document ID	BCC10694

This document and any information therein are confidential property of North Falls Offshore Wind Farm Limited and without infringement neither the whole nor any extract may be disclosed, loaned, copied or used for manufacturing, provision of services or other purposes whatsoever without prior written consent of North Falls Offshore Wind Farm Limited, and no liability is accepted for loss or damage from any cause whatsoever from the use of the document. North Falls Offshore Wind Farm Limited retains the right to alter the document at any time unless a written statement to the contrary has been appended.

Revision Date		Status/Reason Originator for Issue		Checked	Approved
0	April 2025	Deadline 4	ВС	NFOW	NFOW

BCC10694

North Falls Offshore Wind

EMF Assessment

Client: RWE

Document Control

Revision	Status	Prepared by	Checked by	Approved by	Date
RO	First Issue	WA	OA	SM	30/03/2025
R1	Second Issue	WA	OA	SM	16/04/2025

Project Title: North Falls Offshore Wind EMF Assessment

Project Reference: BCC10694

Client: RWE

Website: www.blakeclough.com

Contact Email: @blakeclough.com

Contact Number:

This report has been prepared exclusively for the purposes of the Project and Client set out above. It is intended solely for the use of the Client in relation to this Project. No third party may rely upon or derive any rights from the content, analysis or conclusions of this report. The author accepts no responsibility or liability to any person or entity for the use or reliance on this report, either in whole or in part.

Any reproduction, distribution, or use of the report, in any form, without the prior written consent of the author [or the Client], is strictly prohibited. Copyright © [Blake Clough Consulting Ltd] [2025].

Contents

Docum	ent Cont	trol	2
1.	Introdu	iction	6
1.1.	Sco	ppe	6
1.2.	Pro	oject Description	6
1.3.	Co	mputation Tool	8
1.4.	Sta	ındards and Technical Specifications	9
2.	Design	Data	10
2.1.	Env	vironmental Parameters Assumptions	10
2.2.	Cal	ble Installation Assumptions	10
2.3.	Ge	neral Assumptions	10
2.4.	Loa	ad Rating	11
2.5.	Sce	enarios	11
2.6.	Cal	ble Details	11
2.7.	Cal	ble Trench and HDD Details	12
3.	EMF As	ssessment Study	14
3.1.	Sce	enario 1	14
	3.1.1.	Simulation Parameters and Cables Details	14
	3.1.2.	Simulation Results	14
3.2.	Sce	enario 1a	16
	3.2.1.	Simulation Parameters and Cables Details	16
	3.2.2.	Simulation Results	16
3.3.	Sce	enario 2	18
	3.3.1.	Simulation Parameters and Cables Details	18
	3.3.2.	Simulation Results	18
3.4.	Sce	enario 2a	20
	3.4.1.	Simulation Parameters and Cables Details	20
	3.4.2.	Simulation Results	20
3.5.	Sce	enario 3	22
	3.5.1.	Simulation Parameters and Cables Details	22
	3.5.2.	Simulation Results	22
3.6.	Sce	enario 3a	24
	3.6.1.	Simulation Parameters and Cables Details	24
	3.6.2.	Simulation Results	24
3.7.	Sce	enario 4	26
	3.7.1.	Simulation Parameters and Cables Details	26
	3.7.2.	Simulation Results	26

3.8.	Scer	nario 4a		28
	3.8.1.	Simulation Parameters and Cables Details	28	
	3.8.2.	Simulation Results	28	
3.9.	Scer	nario 5		30
	3.9.1.	Simulation Parameters and Cables Details	30	
	3.9.2.	Simulation Results	30	
3.10	. Scer	nario 5a	3	32
	3.10.1.	Simulation Parameters and Cables Details	32	
	3.10.2.	Simulation Results	32	
3.11	. Scer	nario 6		34
	3.11.1.	Simulation Parameters and Cables Details	34	
	3.11.2.	Simulation Results	34	
3.12	. Scer	nario 6a		36
	3.12.1.	Simulation Parameters and Cables Details	36	
	3.12.2.	Simulation Results	36	
3.13	. Scer	nario 7		38
	3.13.1.	Simulation Parameters and Cables Details	38	
	3.13.2.	Simulation Results	38	
3.14	. Scer	nario 8	4	40
	3.14.1.	Simulation Parameters and Cables Details	40	
	3.14.2.	Simulation Results	40	
3.15	. Scer	nario 9	4	42
	3.15.1.	Simulation Parameters and Cables Details	42	
	3.15.2.	Simulation Results	42	
3.16	. Scer	nario 10		44
	3.16.1.	Simulation Parameters and Cables Details	44	
	3.16.2.	Simulation Results	44	
4.	Compari	son of All Scenarios Result	46	
5.	EMF Cor	npliance	47	
5.1.	Pub	lic Exposure Limits:	2	47
6.	Conclusi	on	48	
7.	Referen	ces	49	
	Appendi	x-A Datasheets	51	
	Appendi	x-B Simulation Report	57	

List of Abbreviations

AC Alternating Current

DC Direct Current

TR Thermal Resistivity

HDD Horizontal Directional Drilling

XLPE Cross Link Polyethylene

HV High Voltage

LV Low Voltage

P Active Power

PF Power Factor

POC Point of Connection

POS Point of Supply

p.u. Per Unit

EMF Electromagnetic Field Intensity

NF North Fall

VE Five Estuaries

Units

kV Kilovolts

MV Megavolt

MVA Megavolt-Amperes

MVAr Megavar

MW Megawatt

μT Micro Tesla

1. Introduction

1.1. Scope

Blake Clough has been contracted by RWE to conduct an Electromagnetic Field Assessment (EMF) of the proposed onshore cables for the North Falls Offshore Wind farm. This project involves conducting simulations to assess the electromagnetic field (EMF) impacts of underground cable systems installed at different depths below the surface. The objective is to evaluate the compliance of the cable scenarios with UK guidance notes and provide necessary recommendations for achieving compliance where required.

The objectives of the project are as follows:

- Perform simulations to analyse the EMF emissions from various underground cable configurations.
- Assess the compliance of the EMF levels with regulations and standards.
- Generate results and reports, including necessary graphs, to present findings.
- Provide recommendations on modifications, if necessary, to meet compliance.

The primary objective of this study is to assess the potential EMF levels to ensure they remain within acceptable limits while also meeting the project's operational needs and environmental guidelines.

1.2. Project Description

The North Falls Offshore Wind Farm project involves the installation of onshore export cables (underground cables) to connect the offshore wind farm to the national grid at 400 kV. The onshore cable length from the offshore wind cable to the national grid is around 21.6 km. The onshore export cable consists of two circuits of 220 kV with 800 MW capacity or 275 kV with 1000 MW capacity.

An Electromagnetic Field (EMF) study is required to assess the impact of the cables on the surrounding environment, especially considering the proximity of residential and commercial areas. This report will evaluate different burial methods, including open trench and Horizontal Directional Drilling (HDD), with varying depths to ensure minimal disruption and compliance with health and safety standards.

Figure 1-1 shows the onshore cable route of the export cable. The 400 kV onshore substation is located at point 31 on the map, with the PoC into the National Grid located at point 32.

The North fall onshore cable (NF) route is shared with another project – Five Estuaries (VE). So, this project will also be considered when assessing the EMF values.

Figure 1-1: Onshore boundary overview map of North falls offshore wind.

Figure 1-2 shows the single line diagram of the North fall offshore wind.

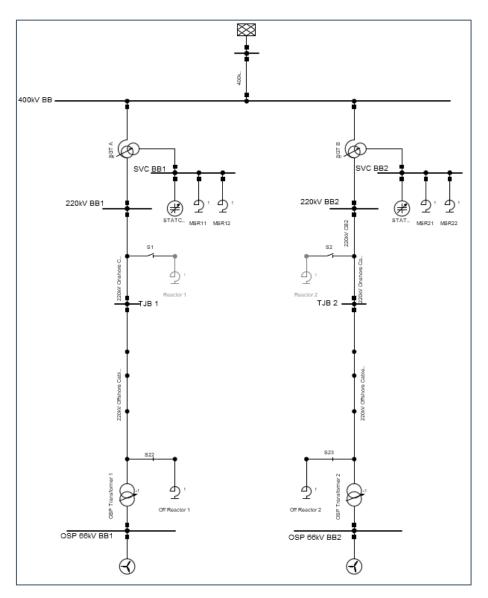


Figure 1-2: Project single line diagram.

1.3. Computation Tool

The current rating study was conducted using ELEK Cable HV V7.0 by Electrotechnik [1], which complies with IEC 60287 [3] and CIGRE TB 880 [4].

ELEK Software for cable calculation is a robust and versatile tool that supports electrical professionals in the design and analysis of cable systems. Its advanced features, compliance with standards, and user-friendly interface make it an essential resource for ensuring the safety, efficiency, and reliability of electrical installations. Some key features are given below:

<u>Load Calculation:</u> Determines the appropriate cable size based on current-carrying capacity and load requirements.

<u>Temperature Effects:</u> Assesses the impact of operating temperatures on cable performance and selects the right cable size to handle heat dissipation effectively.

<u>Heat Dissipation</u>: Simulates thermal conditions to evaluate heat dissipation and ensure cables operate within safe temperature ranges.

<u>Ambient Conditions:</u> Takes into account ambient temperature and installation conditions to adjust calculations accordingly.

Short-Circuit Rating: Analysis the cable's ability to withstand short-circuit conditions, providing information on the required protection measures.

<u>Electromagnetic Field (EMF) Analysis:</u> Evaluates the electromagnetic field exposure from cables to ensure compliance with health and safety standards. The software helps in determining cable burial depths and configurations to minimize EMF impact, ensuring the safety of personnel and the surrounding environment.

1.4. Standards and Technical Specifications

As a minimum, the following Table 1-1 shows the standards and technical specifications that have been considered as the basis of the underground cable EMF assessment.

Table 1-1: Applicable standards and technical specifications.

STANDARD / TECHNICAL DOCUMENT	DOCUMENT TITLE
IEC 60287	Calculation of the Continuous Current Rating of Cables
SPTS 2.5	General Requirements for 132, 275, 400kV Cables
ENA TS 12-24	Technical specification for plastic ducts for buried electric cables
ENA EREC C55	Insulated sheath power cable systems
ICNIRP	International Commission on Non-Ionizing Radiation Protection

2. Design Data

2.1. Environmental Parameters Assumptions

Table 2-1 presents the environmental parameters used for the cable EMF assessment The environmental parameters are assumed in accordance with IEC 60287-3-1, and a soil thermal resistivity value is considered 1.2 K.m/W. For accurate cable sizing, it is essential to obtain the site-specific soil thermal resistivity values. In some cases, the actual value may exceed the assumed value of 1.2 K.m/W, potentially leading to significant under sizing of the cable. The Relative Soil Permeability value is assumed to be 1. No Solar radiation is assumed.

 Parameter
 Value

 Ground temperature for cable ducted installation
 15 °C

 Maximum ambient temperature
 30 °C

 Thermal resistivity of soil
 1.2 Km/W

 Relative soil permeability
 1

 Solar Radiation
 No solar radiation (trench layout)

Table 2-1: Environmental parameters.

2.2. Cable Installation Assumptions

The following cable installation parameters are assumed for the simulation of all scenarios.

- The thermal resistivity of the soil is considered to be 1.2 K·m/W.
- The relative permeability of the soil is considered to be 1.
- The ground temperature of soil is considered to be 15 0C.
- The maximum temperature of the conductor is considered to be 90 0C.
- All ducts are ID/OD 237/250 mm PVC ducts.
- Cable arrangement is considered flat with spacing.
- Cross bonded regularly transposed.

2.3. General Assumptions

- For the worst case, the open trench depth of laying is considered as 1100 mm.
- EMF values will be measured at ground level and 1 m above ground level.
- A 0.95 pf is considered while calculating the load current as per the Grid code [7] for export conditions, as a connection agreement is not available.
- General cable datasheets are used as the cable brand is not finalized. Datasheets are attached in the appendix.
- Due to the unavailability of a similar datasheet for 275 kV as for 220 kV and 400 kV cables, a 330 kV datasheet is used for 275 kV (parameters are compared to another datasheet of 275 kV to make sure all values are within limits).

2.4. Load Rating

As per the provided information about export capacities, Table 2-2 summarises the current requirements in different scenarios, which is calculated using:

$$I_R = \frac{S}{\sqrt{3} * V_{L-L} * PF}$$

 $I_{\rm R}$: Rated Current (A) S: Apparent Power (VA) $V_{\rm LL}$: Line to Line Voltage (V)

Table 2-2: Required current rating of the circuits.

Circuits	Voltage (kV)	Capacity (MW)	Total Current (A)
North Fall Export cable	220	850	2349
North Fall Export cable	275	1000	2210
Five Estuaries Cable	275	1080	2387
North Fall 400kV Cable	400	850	1292
North Fall 400kV Cable	400	1000	1520

2.5. Scenarios

As per the provided information, Table 2-3 presents all scenarios which will be considered for the EMF assessment. As the total export capacity of North Fall wind farm is still not finalised, both 850 MW with 220 kV and 1000 MW with 275 kV are being considered along with Five Estuaries 275 kV circuit.

Table 2-3: Project study scenarios.

Scenarios	Installation Condition	NF Voltage (kV)	NF Wind Farm capacity (MW)	VE Voltage (kV)	VE Wind Farm capacity (MW)
Scenario 1		220	850	-	-
Scenario 1a	On an Cut Transh	220	850	275	1080
Scenario 2	Open Cut Trench	275	1000	-	-
Scenario 2a		275	1000	275	1080
Scenario 3		220	850	-	-
Scenario 3a	Shallow HDD	220	850	275	1080
Scenario 4		275	1000	-	-
Scenario 4a		275	1000	275	1080
Scenario 5		220	850	-	-
Scenario 5a	Danie 1100	220	850	275	1080
Scenario 6	Deep HDD	275	1000	-	-
Scenario 6a		275	1000	275	1080
Scenario 7	Open Cut Trench	400	850	-	-
Scenario 8		400	1000	-	-
Scenario 9	Shallow HDD	400	850	-	-
Scenario 10	Stidilow HDD	400	1000	-	-

2.6. Cable Details

As per the provided information, Table 2-4 presents the cable size and required current rating per cable run in all scenarios.

Table 2-4: Cable details and required current per cable run.

Circuits	Voltage (kV)	Capacity (MW)	Cable Size	No. of Cables / Cores	Required Current (A) per Cable Run
North Fall Export cable	220	850	2500 mm ² Al.	2 runs of 3 x 1c	1174
North Fall Export cable	275	1000	2500 mm² Al.	2 runs of 3 x 1c	1105
Five Estuaries Cable	275	1080	2500 mm² Al.	2 runs of 3 x 1c	1194
North Fall 400kV Cable	400	850	2000 mm² Al.	2 runs of 3 x 1c	646
North Fall 400kV Cable	400	1000	2000 mm² Al.	2 runs of 3 x 1c	760

Table 2-5 presents the design parameters of the power cable. The cable's metallic screens are cross-bonded, and a detailed cable model design for the 220 kV, 275 kV and 400 kV power cables are provided in the Appendices.

Table 2-5: Power cable design parameters.

Parameter	Cable Details			
System Voltage	220 kV	275 kV	400 kV	
Conductor Material	Aluminium	Aluminium	Aluminium	
Conductor Screen	Semi-conducting	Semi-conducting	Semi-conducting	
Insulation	XLPE	XLPE	XLPE	
Insulation Screen	Semi-conducting	Semi-conducting	Semi-conducting	
Screen	Cu. wire screen	Cu. wire screen	Cu. wire screen	
Tape	Aluminium Laminated Tape	Aluminium Laminated Tape	Aluminium Laminated Tape	
Over Sheath	PVC	PVC	PVC	
Maximum Conductor Temperature	90 °C	90 °C	90 °C	

2.7. Cable Trench and HDD Details

(a) Open cut trench

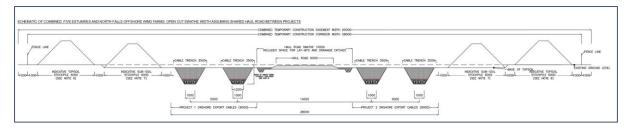


Figure 2-1: Open cut trench cross section.

(b) Typical cable trench

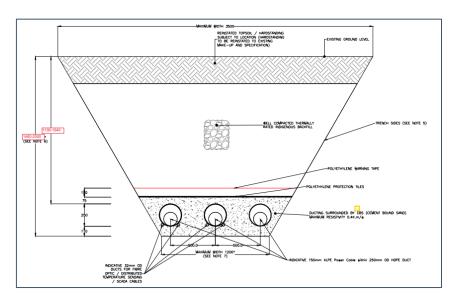


Figure 2-2: Typical cable trench cross section.

(c) Shallow HDD (5 m below surface)

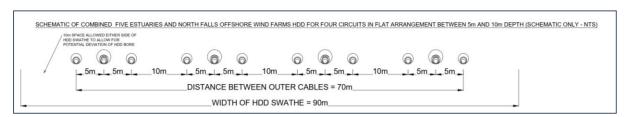


Figure 2-3: Typical Shallow HDD cross section.

(d) Deep HDD (20 m below surface)

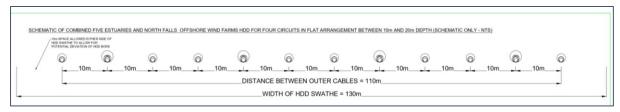


Figure 2-4: Typical Deep HDD cross section.

3. EMF Assessment Study

According to the provided information, the following 16 scenarios are simulated to evaluate the electromagnetic field (EMF) values at depths of ground level and 1m above ground level.

3.1. Scenario 1

In Scenario 1, the EMF assessment will be conducted for 850 MW 220 kV NF cable in Open cut trench.

3.1.1. Simulation Parameters and Cables Details

- Cable laying in open cut trench.
- Depth of the cable is 1100 mm.
- Cable size is 2500 mm² 220 kV Al.
- Flat arrangement with 500 mm spacing among phases.

3.1.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

NO.	NAME	CONDUCTOR TEMPERATURE	CURRENT RATING	CABLE SYSTEM NO.	SYSTEM RATING
1	220kV NF1	57.861 °C	1175 A	1	2350 A
2	220kV NF2	57.861 °C	1175 A	1	2350 A
0.00	on Image				
	Ambient temp. = 15 °C Native soil = 1.2 K.m/W				Ground level
0.40					
0.60					
1.00	1175 A				1175 A 57.86 °C
1.20-	57.86 °C				
1.40		(a)		V.	9) (6) (6) 220KV NF2
1.60	220kV NF1				
1.80					
2.00-					
2.20-					
2.40-					
2.60					
2.80					
3.00					
3.40					
3.60					
3.88	2 -0.40-0.20-0.00 0.20 0.4	0 0.60 0.80 1.00 1.20 1.40 1.60 1.80	2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.4	40 3.60 3.80 4.00 4.20 4.40	4,60 4,80 5,00 5,20 5,40 5,72

Figure 3-1-1: Cable installation arrangement (Scenario 1).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-1.

Table 3-1: Summary of the EMF study results (Scenario 1).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	104.22
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	34.57

Based on the results presented in Table 3-1, the maximum electromagnetic field intensity of the cables is $104.22~\mu T$ at 0 m above the ground.

Figure 3-2-1 shows the graphical representation of the magnetic field with respect to lateral distance.

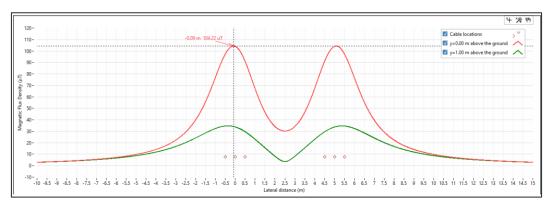


Figure 3-2-1: Magnetic field (μT) with respect to lateral distance (m) (Scenario 1).

3.2. Scenario 1a

In Scenario 1a, the EMF assessment will be conducted for 850 MW 220 kV NF cable in Open cut trench along with Five Estuaries 1080 MW 275 kV cables.

3.2.1. Simulation Parameters and Cables Details

- Cable laying in open cut trench.
- The depth of the cables is 1100 mm.
- Cable sizes are 2500 mm² 220 kV Al. and 2500 mm² 275 kV Al.
- Flat arrangement with 500 mm spacing among phases.
- 14m separation between NF and VE cables.

3.2.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

NO.	NAME	CONDUCTOR TEMPERATURE	CURRENT RATING	CABLE SYSTEM NO.	SYSTEM RATING
1	275kV VE1	61.644 °C	1194 A	2	2380 A
2	275kV VE2	61.781 °C	1194 A	2	2380 A
3	220kV NF1a	58.207 °C	1175 A	1	2350 A
4	220kV NF2b	58.061 °C	1175 A	1	2350 A
1.061	94-A-1 emp. = 15 °C 64 °C = 1.2 Km/W 	1194 A 61.78 °C 275KV VE2		1175 A 58 21 °C 220k/ NF1a	
5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50					
11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.31 -0.72	1.00 2.00 3.00 4	4.00 5.00 6.00 7.00 8.00 9.00	10.00 11.00 12.00 13.00 14.00 15.00	16.00 17.00 18.00 19.00 20	1.00 21.00 22.00 23.00 24.73

Figure 3-1-2: Cable installation arrangement (Scenario 1a).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-2.

Table 3-2: Summary of the EMF study results (Scenario 1a).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	106.14
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	34.67

Based on the results presented in Table 3-2, the maximum electromagnetic field intensity of the cables is 106.14 μ T at 0 m above the ground.

Figure 3-2-2 shows the graphical representation of the magnetic field with respect to lateral distance.

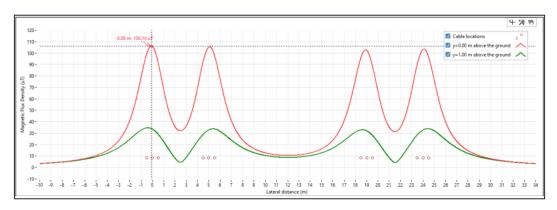


Figure 3-2-2: Magnetic field (μT) with respect to lateral distance (m) (Scenario 1a).

3.3. Scenario 2

In Scenario 2, the EMF assessment will be conducted for 1000 MW 275 kV NF cable in Open cut trench.

3.3.1. Simulation Parameters and Cables Details

- Cable laying in open cut trench.
- The depth of the cables is 1100 mm.
- Cable size is 2500 mm² 275 kV Al.
- Flat arrangement with 500 mm spacing among phases.

3.3.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

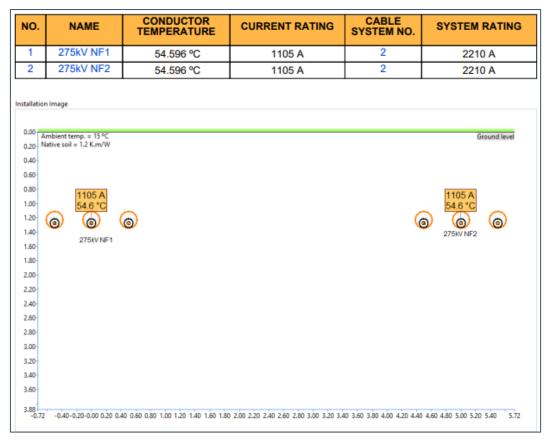


Figure 3-1-3: Cable installation arrangement (Scenario 2).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-3.

Table 3-3: Summary of the EMF study results (Scenario 2).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	99.02
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	32.7

Based on the results presented in Table 3-3, the maximum electromagnetic field intensity of the cables is 99.02 μT at 0 m above the ground.

Figure 3-2-3 shows the graphical representation of the magnetic field with respect to lateral distance.

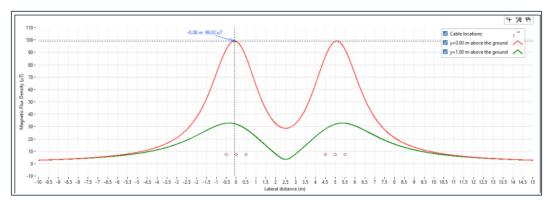


Figure 3-2-3: Magnetic field (μT) with respect to lateral distance (m) (Scenario 2).

3.4. Scenario 2a

In Scenario 2a, the EMF assessment will be conducted for 1000 MW 275 kV NF cable in Open cut trench along with Five Estuaries 1080 MW 275 kV cables.

3.4.1. Simulation Parameters and Cables Details

- Cable laying in open cut trench.
- The depth of the cables is 1100 mm.
- Cable sizes are 2500 mm² 220 kV Al. and 2500 mm² 275 kV Al.
- Flat arrangement with 500 mm spacing among phases.
- 14m separation between NF and VE cables.

3.4.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

NO.	NAME	CONDUCTOR TEMPERATURE	CURRENT RATING	CABLE SYSTEM NO.	SYSTEM RATING
1	275kV VE1	61.627 °C	1194 A	3	2380 A
2	275kV VE2	61.752 °C	1194 A	3	2380 A
3	220kV NF1a	54.938 °C	1105 A	2	2210 A
4	220kV NF2b	54.794 °C	1105 A	2	2210 A
1.061	94-Art emp. = 15 °C 63 °C I = 1.2 Km/W	1194 A 61.75 °C 275kV VE2		1105 A 54.94 °C 220k/ NF1a	
7.50- 8.00- 8.50- 9.00- 9.50- 10.00- 11.50- 11.50- 12.00- 12.50- 13.00- 14.00- 14.50- 15.31-					

Figure 3-1-4: Cable installation arrangement (Scenario 2a).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-4.

Table 3-4: Summary of the EMF study results (Scenario 2a).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	106.2
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	34.71

Based on the results presented in Table 3-4, the maximum electromagnetic field intensity of the cables is $106.2~\mu T$ at 0 m above the ground.

Figure 3-2-4 shows the graphical representation of the magnetic field with respect to lateral distance.

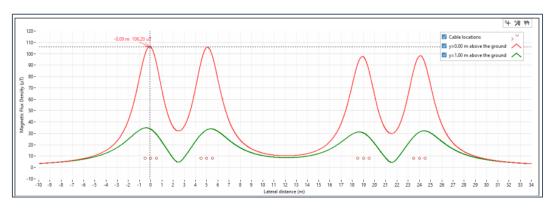


Figure 3-2-4: Magnetic field (μT) with respect to lateral distance (m) (Scenario 2a).

21

3.5. Scenario 3

In Scenario 3, the EMF assessment will be conducted for 850 MW 220 kV NF cable in Shallow HDD at 5 m depth.

3.5.1. Simulation Parameters and Cables Details

- Cable laying in Shallow HDD.
- The depth of the cable is 5m.
- Cable size is 2500 mm² 220 kV Al.
- Flat arrangement with 5m spacing among phases.

3.5.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

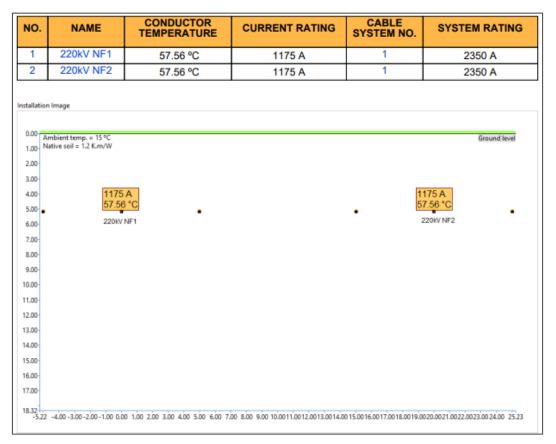


Figure 3-1-5: Cable installation arrangement (Scenario 3).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions, Table 3-5 presents the results of the EMF study. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-5.

Table 3-5: Summary of the EMF study results (Scenario 3).

	S#	Description	Unit	Values
Ī	1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	41.63
	2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	32.61

Based on the results presented in Table 3-5, the maximum electromagnetic field intensity of the cables is 41.63 μT at 0 m above the ground.

Figure 3-2-5 shows the graphical representation of the magnetic field with respect to lateral distance.

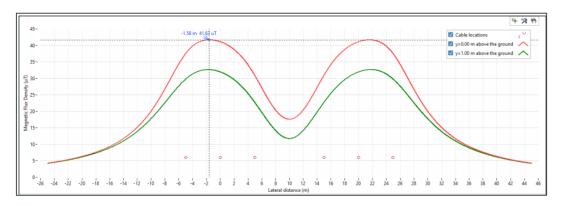


Figure 3-2-5: Magnetic field (μT) with respect to lateral distance (m) (Scenario 3).

3.6. Scenario 3a

In Scenario 3a, the EMF assessment will be conducted for 850 MW 220 kV NF cable along with Five Estuaries 1080 MW 275 kV cables in Shallow HDD at 5 m depth.

3.6.1. Simulation Parameters and Cables Details

- Cable laying in Shallow HDD.
- The depth of the cable is 5m.
- Cable sizes are 2500 mm² 220 kV Al. and 2500 mm² 275 kV Al.
- Flat arrangement with 5m spacing among phases.
- 10m separation between NF and VE cables.

3.6.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

NO.	NAME	CONDUCTOR TEMPERATURE	CURRENT RATING	CABLE SYSTEM NO.	SYSTEM RATING
1	275kV VE1	61.807 °C	1194 A	2	2380 A
2	275kV VE2	63.399 °C	1194 A	2	2380 A
3	220kV NF1	59.965 °C	1175 A	1	2350 A
4	220kV NF2	58.274 °C	1175 A	1	2350 A
0.00 A	mbient temp. = 15 °C				Ground level
2.00- N 4.00-	1194 A ^{2 K.m/W} 61.81 °C	1194 A 63.4 °C	1179	5 A 17 °C	1175 A 58.27 °C
6.00	275kV VE1	275KV VE2		V NF1	220kV NF2
8.00					
10.00-					
14.00					
16.00-					
18.00-					
20.00-					
22.00-					
4.00					
28.00					
30.00					
32.00-					
34.00					
36.00					
38.00-					
40.00-					
42.38					

Figure 3-1-6: Cable installation arrangement (Scenario 3a).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-6.

Table 3-6: Summary of the EMF study results (Scenario 3a).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μТ	41.19
2	Maximum Electromagnetic field intensity @ 1m above the ground	μТ	32.09

Based on the results presented in Table 3-6, the maximum electromagnetic field intensity of the cables is $41.19 \,\mu T$ at 0 m above the ground.

Figure 3-2-6 shows the graphical representation of the magnetic field with respect to lateral distance.

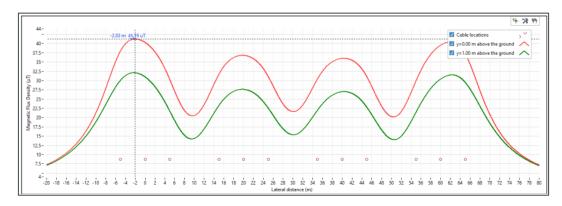


Figure 3-2-6: Magnetic field (μT) with respect to lateral distance (m) (Scenario 3a).

3.7. Scenario 4

In Scenario 4, the EMF assessment will be conducted for 1000 MW 275 kV NF cable in Shallow HDD at 5 m depth.

3.7.1. Simulation Parameters and Cables Details

- Cable laying in Shallow HDD.
- The depth of the cable is 5m.
- Cable size is 2500 mm² 275 kV Al.
- Flat arrangement with 5m spacing among phases.

3.7.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

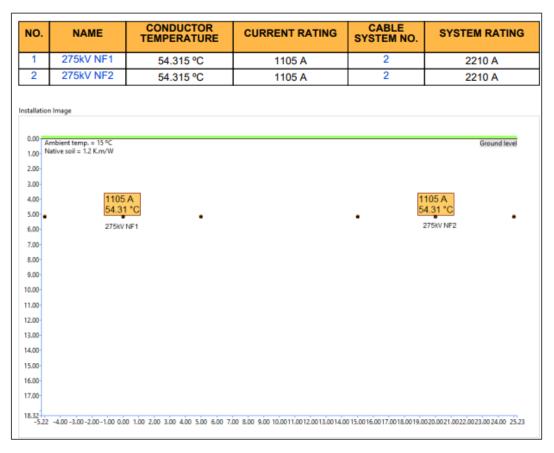


Figure 3-1-7: Cable installation arrangement (Scenario 4).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-7.

Table 3-7: Summary of the EMF study results (Scenario 4).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	39.21
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	30.71

Based on the results presented in Table 3-7, the maximum electromagnetic field intensity of the cables is $39.21~\mu T$ at 0 m above the ground.

Figure 3-2-7 shows the graphical representation of the magnetic field with respect to lateral distance.

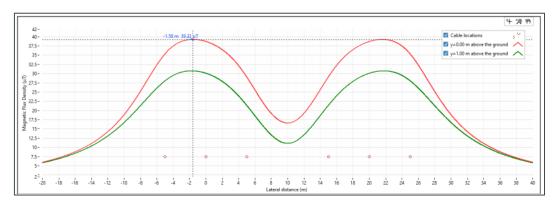


Figure 3-2-7: Magnetic field (μT) with respect to lateral distance (m) (Scenario 4).

3.8. Scenario 4a

In Scenario 4a, the EMF assessment will be conducted for 1000 MW 275 kV NF cable along with Five Estuaries 1080 MW 275 kV cables in Shallow HDD at 5 m depth.

3.8.1. Simulation Parameters and Cables Details

- Cable laying in Shallow HDD.
- The depth of the cable is 5m.
- Cable sizes are 2500 mm² 220 kV Al. and 2500 mm² 275 kV Al.
- Flat arrangement with 5m spacing among phases.
- 10m separation between NF and VE cables.

3.8.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

NO.	NAME	CONDUCTOR TEMPERATURE	CURRENT RATING	CABLE SYSTEM NO.	SYSTEM RATING
1	275kV VE1	61.748 °C	1194 A	3	2380 A
2	275kV VE2	63.198 °C	1194 A	3	2380 A
3	220kV NF1	56.695 °C	1105 A	2	2210 A
4	220kV NF2	55.021 °C	1105 A	2	2210 A
0.00	n Image mbient temp. = 15 °C				Ground level
2.00- N 4.00-	1194 A ^{2 K.m/W} 61.75 °C	1194 A 63.2 °C	56.7	05 A 7 °C	1105 A 55.02 °C
6.00	275kV VE1	275KV VE2	220%	V NF1	220KV NF2
0.00					
2.00-					
4.00-					
6.00-					
8.00-					
-00.0					
2.00-					
1.00- 5.00-					
.00					
1.00					
.00					
.00-					
.00-					
3.00-					
0.00					

Figure 3-1-8: Cable installation arrangement (Scenario 4a).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-8.

Table 3-8: Summary of the EMF study results (Scenario 4a).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	41.26
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	32.15

Based on the results presented in Table 3-8, the maximum electromagnetic field intensity of the cables is 41.26 μT at 0 m above the ground.

Figure 3-2-8 shows the graphical representation of the magnetic field with respect to lateral distance.

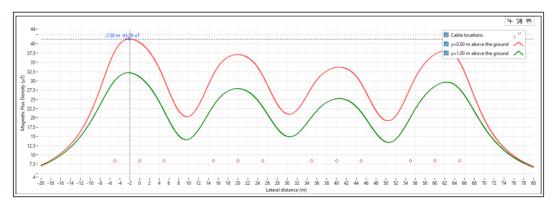


Figure 3-2-8: Magnetic field (μT) with respect to lateral distance (m) (Scenario 4a).

3.9. Scenario 5

In Scenario 5, the EMF assessment will be conducted for 850 MW 220 kV NF cable in Deep HDD at 20 m depth.

3.9.1. Simulation Parameters and Cables Details

- Cable laying in open cut trench.
- The depth of the cable is 20m.
- Cable size is 2500 mm² 220 kV Al.
- Flat arrangement with 10m spacing among phases.

3.9.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

22.00- 23.00-	NO.	NAME		NDUCTO IPERATU		CURI	RENT R	ATING	s	CAB		SY	STEM	RATII	NG
stallation Image 0.00 Ambient temp. = 15 °C Native soil = 1.2 K·m/W 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1.1.00 1.00 1.00 1.00 1.00 1.00	1	220kV NF1	7	78.702 °C	;		1175 A	\		1			2350) A	
0.00 Ambient temp. = 15 °C Native soil = 1.2 K.m/W 3.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1.00 2.00 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 9.00 9.00 9.00 9.00 9.00 9	2	220kV NF2	7	78.702 °C	;		1175 A	\		1			2350) A	
Ambient temp. = 15 °C. Native soil = 1.2 K.m/W Native soil = 1.2 K.m/W 100 100 100 100 100 100 100 1		on Image													
21.00- 220K/ NF1 220K/ NF2 22.00- 23.00-	1.00- 2.00- 3.00- 4.00- 5.00- 6.00- 7.00- 8.00- 9.00- 10.00- 11.00- 12.00- 13.00- 14.00- 15.00- 17.00- 18.00- 19.00- 19.00- 19.00-	Native soil = 1.2 K.m/W											Gr	ound lev	rel
24.00 ⁻ 25.00 ⁻ 26.00 ⁻ 27.00 ⁻ 28.00 ⁻ 29.00 ⁻	21.00- 22.00- 23.00- 24.00- 25.00- 26.00- 27.00- 28.00- 29.00-										220KV NF	2			

Figure 3-1-9: Cable installation arrangement (Scenario 5).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-9.

Table 3-9: Summary of the EMF study results (Scenario 5).

	S#	Description		Values
Ī	1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	8.24
ſ	2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	7.71

Based on the results presented in Table 3-9, the maximum electromagnetic field intensity of the cables is $8.24~\mu T$ at 0 m above the ground.

Figure 3-2-9 shows the graphical representation of the magnetic field with respect to lateral distance.

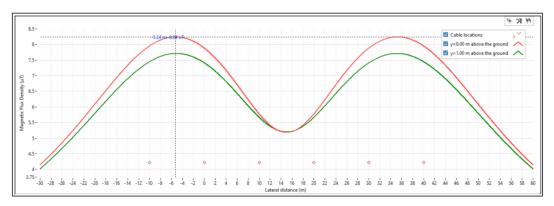


Figure 3-2-9: Magnetic field (μT) with respect to lateral distance (m) (Scenario 5).

3.10. Scenario 5a

In Scenario 5a, the EMF assessment will be conducted for 850 MW 220 kV NF cable along with Five Estuaries 1080 MW 275 kV cables in Deep HDD at 20 m depth.

3.10.1. Simulation Parameters and Cables Details

- Cable laying in Deep HDD.
- The depth of the cable is 20m.
- Cable sizes are 2500 mm² 220 kV Al. and 2500 mm² 275 kV Al.
- Flat arrangement with 10m spacing among phases.
- 10m separation between NF and VE cables.

3.10.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

NO.	NAME	CONDUCTOR TEMPERATURE	CURRENT RATING	CABLE SYSTEM NO.	SYSTEM RATING
1	275kV VE1	90.436 °C	1194 A	2	2380 A
2	275kV VE2	93.954 °C	1194 A	2	2380 A
3	220kV NF1	90.379 °C	1175 A	1	2350 A
4	220kV NF2	85.45 °C	1175 A	1	2350 A
0.00 A	n Image Imbient temp. = 15 °C Iative soil = 1.2 Km/W 1194 A 90.44 °C	1194 A 93.95 °C	1175 90.3		Ground level 1175 A 85.45 °C
2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 0.00- 2.00- 4.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 6.00- 8.00- 8.00- 6.00- 8.	275KV VE1	275kV VE2	220K	V NF1	220kV NF2
.00- .00- .00- .00-					

Figure 3-1-10: Cable installation arrangement (Scenario 5a).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-10.

Table 3-10: Summary of the EMF study results (Scenario 5a).

	S#	Description		Values
Ī	1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	8.2
ſ	2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	7.69

Based on the results presented in Table 3-10, the maximum electromagnetic field intensity of the cables is $8.2 \, \mu T$ at 0 m above the ground.

Figure 3-2-10 shows the graphical representation of the magnetic field with respect to lateral distance.

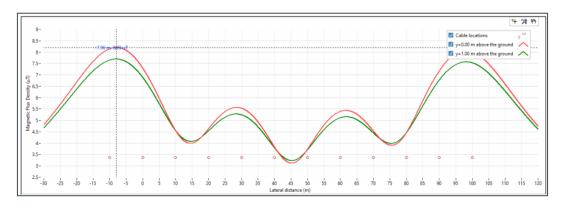


Figure 3-2-10: Magnetic field (μT) with respect to lateral distance (m) (Scenario 5a).

3.11. Scenario 6

In Scenario 6, the EMF assessment will be conducted for 1000 MW 275 kV NF cable in Deep HDD at 20 m depth.

3.11.1. Simulation Parameters and Cables Details

- Cable laying in open cut trench.
- The depth of the cable is 20m.
- Cable size is 2500 mm² 275 kV Al.
- Flat arrangement with 10m spacing among phases.

3.11.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

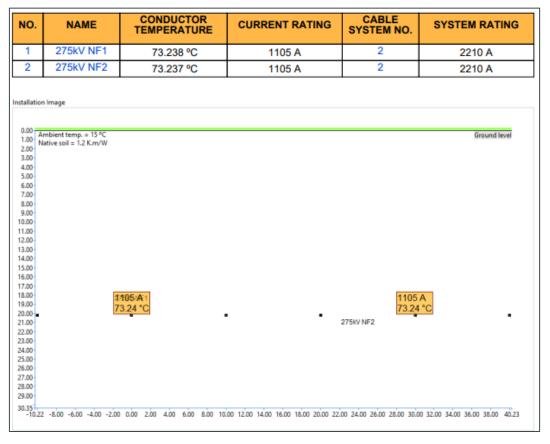


Figure 3-1-11: Cable installation arrangement (Scenario 6).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-11.

Table 3-11: Summary of the EMF study results (Scenario 6).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	7.75
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	7.25

Based on the results presented in Table 3-11, the maximum electromagnetic field intensity of the cables is 7.75 μT at 0 m above the ground.

Figure 3-2-11 shows the graphical representation of the magnetic field with respect to lateral distance.

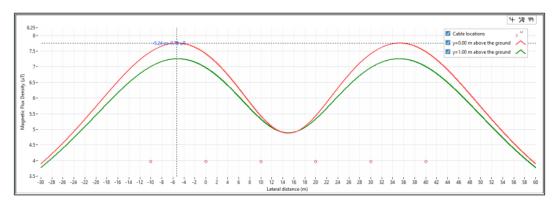


Figure 3-2-11: Magnetic field (μT) with respect to lateral distance (m) (Scenario 6).

3.12. Scenario 6a

In Scenario 6a, the EMF assessment will be conducted for 1000 MW 275 kV NF cable along with Five Estuaries 1080 MW 275 kV cables in Deep HDD at 20 m depth.

3.12.1. Simulation Parameters and Cables Details

- Cable laying in Deep HDD.
- The depth of the cable is 20m.
- Cable sizes are 2500 mm² 220 kV Al. and 2500 mm² 275 kV Al.
- Flat arrangement with 10m spacing among phases.
- 10m separation between NF and VE cables.

3.12.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

NO.	NAME	CONDUCTOR TEMPERATURE	CURRENT RATING	CABLE SYSTEM NO.	SYSTEM RATING
1	275kV VE1	89.82 °C	1194 A	3	2380 A
2	275kV VE2	92.613 °C	1194 A	3	2380 A
3	220kV NF1	85.413 °C	1105 A	2	2210 A
4	220kV NF2	79.815 °C	1105 A	2	2210 A
4.00 N 6.00- 8.00- 10.00- 12.00- 14.00- 16.00- 22.00- 22.00- 24.00- 24.00- 30.00- 33.00- 33.00- 34.00- 44.00- 44.00- 44.00- 44.00- 44.00-	imbient temp. = 15 °C lative soil = 1.2 Km/W 1194 A 89.82 °C 275kV VE1	1194 A 92.61°C 275kV VE2	110 ¹ 85.4 220k		1105 A 79.81 °C 220k/ NF2
50.00- 52.00- 54.00- 56.00- 58.00- 52.00- 54.00- 54.00- 56.44- -10.22	2 -5.00 0.00 5.00 10	0.00 15.00 20.00 25.00 30.00 3	5.00 40.00 45.00 50.00 55.00 60	00 65.00 70.00 75.00	80.00 85.00 90.00 95.00 100.22

Figure 3-1-12: Cable installation arrangement (Scenario 6a).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-12.

Table 3-12: Summary of the EMF study results (Scenario 6a).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	8.2
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	7.69

Based on the results presented in Table 3-12, the maximum electromagnetic field intensity of the cables is $8.2 \, \mu T$ at 0 m above the ground.

Figure 3-2-12 shows the graphical representation of the magnetic field with respect to lateral distance.

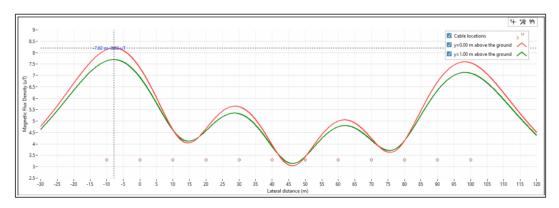


Figure 3-2-12: Magnetic field (μT) with respect to lateral distance (m) (Scenario 6a).

3.13. Scenario 7

In Scenario 7, the EMF assessment will be conducted for 850MW 400 kV NF cable in Open cut trench.

3.13.1. Simulation Parameters and Cables Details

- Cable laying in open cut trench.
- Depth of the cable is 1100 mm.
- Cable size is 2000 mm² 400 kV Al.
- Flat arrangement with 500 mm spacing among phases.

3.13.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

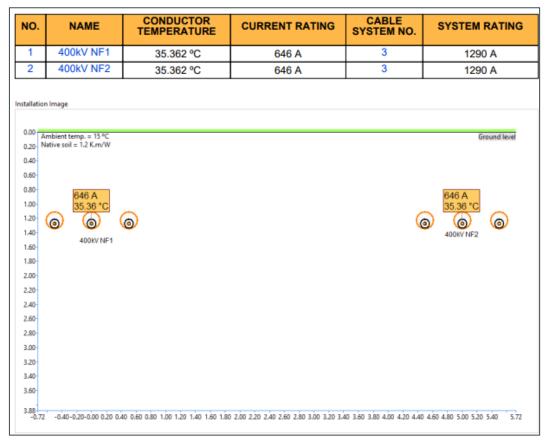


Figure 3-1-13: Cable installation arrangement (Scenario 7).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-13.

Table 3-13: Summary of the EMF study results (Scenario 7).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	57.63
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	19.06

Based on the results presented in Table 3-13, the maximum electromagnetic field intensity of the cables is $57.63 \, \mu T$ at 0 m above the ground.

Figure 3-2-13 shows the graphical representation of the magnetic field with respect to lateral distance.

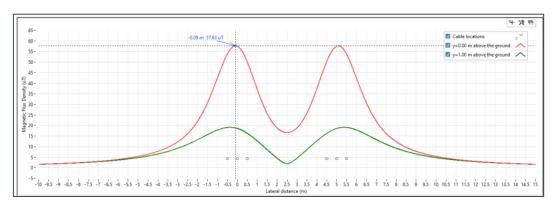


Figure 3-2-13: Magnetic field (μT) with respect to lateral distance (m) (Scenario 7).

3.14. Scenario 8

In Scenario 8, the EMF assessment will be conducted for 1000MW 400 kV NF cable in Open cut trench.

3.14.1. Simulation Parameters and Cables Details

- Cable laying in open cut trench.
- Depth of the cable is 1100 mm.
- Cable size is 2000 mm² 400 kV Al.
- Flat arrangement with 500 mm spacing among phases.

3.14.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

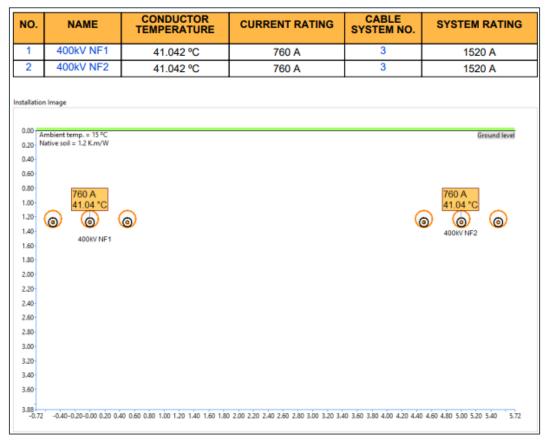


Figure 3-1-14: Cable installation arrangement (Scenario 8).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-14.

Table 3-14: Summary of the EMF study results (Scenario 8).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	67.8
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	22.43

Based on the results presented in Table 3-14, the maximum electromagnetic field intensity of the cables is $67.8~\mu T$ at 0~m above the ground.

Figure 3-2-14 shows the graphical representation of the magnetic field with respect to lateral distance.

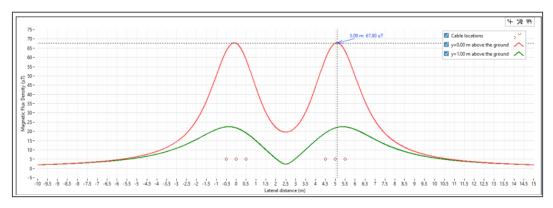


Figure 3-2-14: Magnetic field (μT) with respect to lateral distance (m) (Scenario 8).

3.15. Scenario 9

In Scenario 9, the EMF assessment will be conducted for 850MW 400 kV NF cable in Shallow HDD at 5m depth.

3.15.1. Simulation Parameters and Cables Details

- Cable laying in Shallow HDD.
- The depth of the cable is 5m.
- Cable size is 2000 mm² 400 kV Al.
- Flat arrangement with 5m spacing among phases.

3.15.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

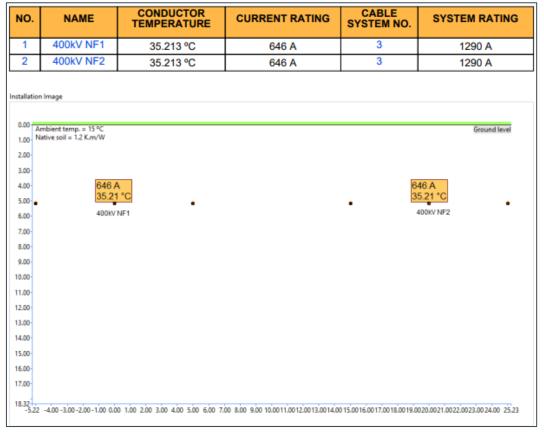


Figure 3-1-15: Cable installation arrangement (Scenario 9).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-15.

Table 3-15: Summary of the EMF study results (Scenario 9).

	S#	Description		Values
	1 Maximum Electromagnetic field intensity @ 0m above the ground			22.91
Г	2 Maximum Electromagnetic field intensity @ 1m above the ground		μΤ	17.94

Based on the results presented in Table 3-15, the maximum electromagnetic field intensity of the cables is $22.91 \,\mu\text{T}$ at 0 m above the ground.

Figure 3-2-15 shows the graphical representation of the magnetic field with respect to lateral distance.

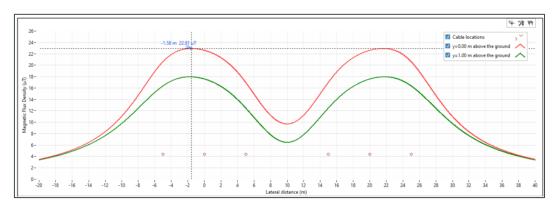


Figure 3-2-15: Magnetic field (μT) with respect to lateral distance (m) (Scenario 9).

3.16. Scenario 10

In Scenario 10, the EMF assessment will be conducted for 1000MW 400 kV NF cable in Shallow HDD at 5m depth.

3.16.1. Simulation Parameters and Cables Details

- Cable laying in Shallow HDD.
- The depth of the cable is 5m.
- Cable size is 2000 mm² 400 kV Al.
- Flat arrangement with 5m spacing among phases.

3.16.2. Simulation Results

Cable Arrangement and Current Carrying Capacity

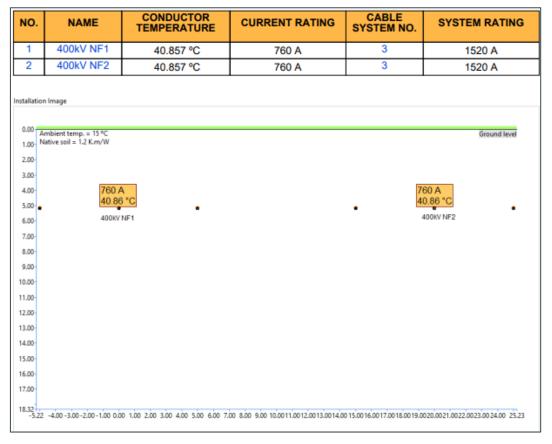


Figure 3-1-16: Cable installation arrangement (Scenario 10).

EMF Modelling Result

Based on the modelled installation, cable, and environmental conditions. The electromagnetic field intensity of the cables can be determined by referencing the results presented in Table 3-16.

Table 3-16: Summary of the EMF study results (Scenario 10).

S#	Description	Unit	Values
1	Maximum Electromagnetic field intensity @ 0m above the ground	μΤ	26.95
2	Maximum Electromagnetic field intensity @ 1m above the ground	μΤ	21.1

Based on the results presented in Table 3-16, the maximum electromagnetic field intensity of the cables is $26.95 \,\mu\text{T}$ at 0 m above the ground.

Figure 3-2-16 shows the graphical representation of the magnetic field with respect to lateral distance.

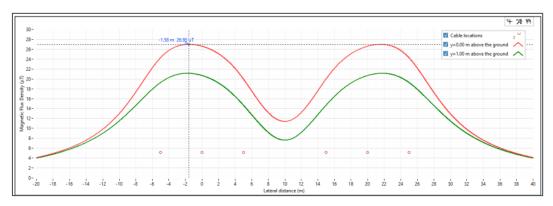


Figure 3-2-16: Magnetic field (μT) with respect to lateral distance (m) (Scenario 10).

4. Comparison of All Scenarios Result

Table 4-1 presents the comparison results of the EMF study for all 16 scenarios at 0m above ground level. The maximum electromagnetic field intensity for all cases can be determined by referring to the results presented in Table 4-1.

Table 4-1: Summary of EMF simulation results.

Scenarios	Description	Values (μT)
Scenario 1	Electromagnetic field intensity @ 0m above the ground	104.22
Scenario 1a	Electromagnetic field intensity @ 0m above the ground	106.14
Scenario 2	Electromagnetic field intensity @ 0m above the ground	99.02
Scenario 2a	Electromagnetic field intensity @ 0m above the ground	106.20
Scenario 3	Electromagnetic field intensity @ 0m above the ground	41.63
Scenario 3a	Electromagnetic field intensity @ 0m above the ground	41.19
Scenario 4	Electromagnetic field intensity @ 0m above the ground	39.21
Scenario 4a	Electromagnetic field intensity @ 0m above the ground	41.26
Scenario 5	Electromagnetic field intensity @ 0m above the ground	8.24
Scenario 5a	Electromagnetic field intensity @ 0m above the ground	8.20
Scenario 6	Electromagnetic field intensity @ 0m above the ground	7.75
Scenario 6a	Electromagnetic field intensity @ 0m above the ground	8.20
Scenario 7	Electromagnetic field intensity @ 0m above the ground	57.63
Scenario 8	Electromagnetic field intensity @ 0m above the ground	67.80
Scenario 9	Electromagnetic field intensity @ 0m above the ground	22.91
Scenario 10	Electromagnetic field intensity @ 0m above the ground	26.95

Based on the above summary table, the analysis reveals that the maximum electromagnetic field intensity in all cases is $106.2 \, \mu T$ at 0 meters above the ground in Scenario 2a.

5. EMF Compliance

The UK's approach to managing public exposure to electromagnetic fields (EMFs) is based on the 1998 ICNIRP Guidelines, which have been formally endorsed by the UK Government [12]. This is reflected in national policies and enforced through voluntary Codes of Practice agreed upon with the Energy Networks Association (ENA) [11].

5.1. Public Exposure Limits:

For areas where members of the public may spend significant time (e.g., homes, schools), the following limits apply:

- Electric Field Strength: 9 kV/m
- Magnetic Flux Density: 360 μT [11].

These limits are designed to protect against known acute health effects from power-frequency fields (50 Hz) and are consistent with the ICNIRP's reference levels [12].

The ICNIRP 1998 Guidelines set the public exposure limit for magnetic fields at 100 μ T (rms) to prevent known health effects [12]. However, the UK uses the 360 μ T reference level, for practical compliance assessment. This higher value accounts for short-term peaks and ensures that infrastructure design remains within safe limits [11].

As per the simulation results of all 16 scenarios, the worst-case value is around 106.20 μ T, which is within the limit of 360 μ T required for compliance.

47

6. Conclusion

The electromagnetic field (EMF) analysis for all 16 scenarios shows that the maximum magnetic field intensity is 106.2 μ T, observed in Scenario 2a. This value is well within the UK's public exposure reference limit of 360 μ T, as outlined in the ICNIRP-endorsed national guidelines. The reference level accounts for realistic operating conditions and short-term variations in field strength. Based on these results, all scenarios evaluated are in full compliance with the applicable EMF exposure standards, confirming that the proposed configurations pose no exceedance of public safety limits.

Recommendation:

Although all simulated values remain compliant, the results can be further improved by increasing the cable burial depth in open-cut trench installations. This adjustment will reduce the maximum magnetic field intensity to below 100 μ T, offering an enhanced safety margin and aligning with best engineering practices for minimising public exposure.

7. References

- [1] Electrotechnik, "Electrical Design Software ELEK," https://elek.com.au/. https://elek.com.au/electrical-software/ (accessed 23-09-2022).
- [2] IEC 60287-2-1 Electric cables Calculation of the current rating Part 2-1: Thermal resistance Calculation of the thermal resistance
- [3] IEC 60287-3-1 Electric cables Calculation of the current rating Operating conditions
- [4] CIGRE TB 880, Power Cable Rating Examples for Calculation Tool Verification, 2022
- [5] IEC 60284-3-1:2017 Electrical cables Calculation of the current rating Part 3-1: Operating conditions Site reference conditions
- [6] DEMIRER KABLO, "DEMIRER KABLO High and Extra High Voltage Cable System 66-500kV XLPE cable." Accessed: Dec. 11, 2023. [Online]. Available: http://www.demirerkablo.com/media/33103/catalogue.pdf.
- [7] "The Grid Code, Issue 6, Revision 25, 5-July-2024"
- [8] SPTS 2.5 General Requirements for 132, 275, 400kV Cables, BETTA-11-005, Issue 1, PowerSystems.
- [9] ENA TS 12-24 Technical specification for plastic ducts for buried electric cables
- [10] E. Fernandez and J. Patrick, Magnetic Fields from High Voltage Power Cables. Electrotechnik Pty Ltd. Available: www.elek.com.au
- [11] "UK Policy." *EMFs.info*, n.d., https://www.emfs.info/exposure-limits-and-policy/UK-policy. Accessed 31 Mar. 2025.
- [12] ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics, 74(4), pp. 494–522. Available at: https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf (Accessed: 31 March 2025).
- [13] Power Lines: Control of Microshocks and other indirect effects of public exposure to electric fields A voluntary Code of Practice. Available at: https://www.emfs.info/uploads/publications/Microshocks_Code_of_Practice.pdf (Accessed: 31 March 2025).

Appendices

Appendix-A Datasheets

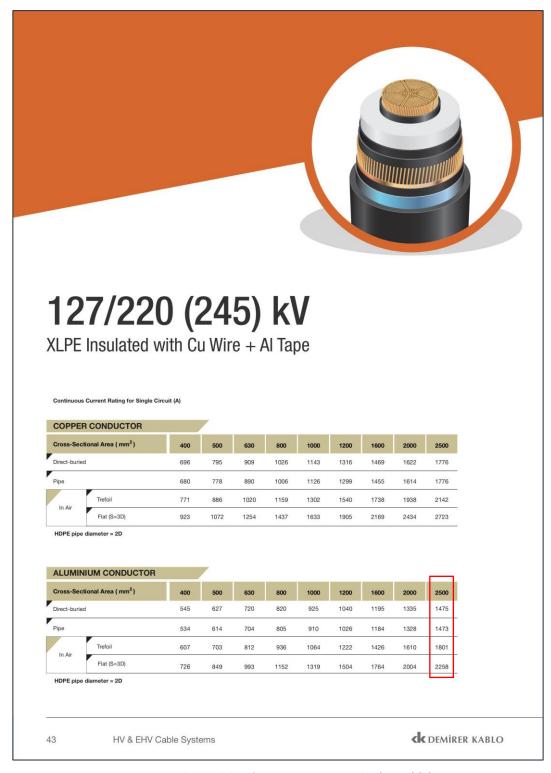


Figure A-1: Electrical data for 220 kV XLPE AC Cable (Part 1) [6].

Figure A-2: Electrical data for 220 kV XLPE AC Cable (Part 2) [6].

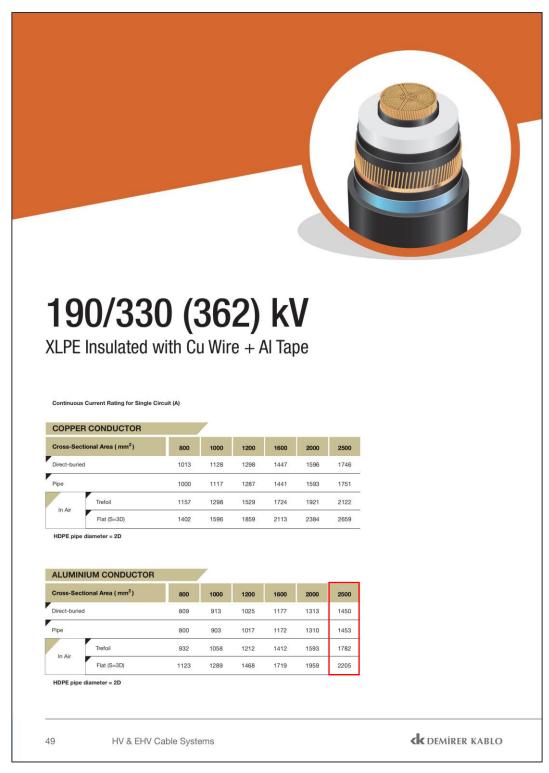


Figure A-3: Electrical data for 275 kV XLPE AC Cable (Part 1) [6].

Figure A-4: Electrical data for 275 kV XLPE AC Cable (Part 2) [6].

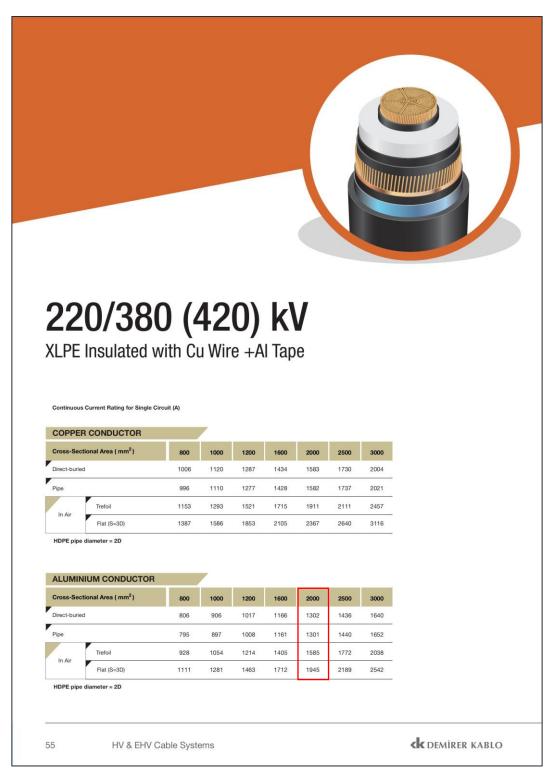


Figure A-5: Electrical data for 400 kV XLPE AC Cable (Part 1) [6].

Figure A-6: Electrical data for 400 kV XLPE AC Cable (Part 2) [6].

56

Appendix-B Simulation Report

Scenario 1

Magnetic Field Intensity Calculations

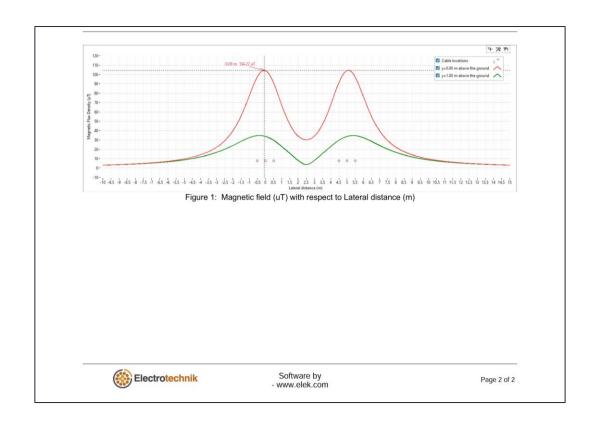
Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-0.500	1.280	1175.000	-120	FORWARD	ON
1	В	0.000	1.280	1175.000	0	FORWARD	ON
1	С	0.500	1.280	1175.000	120	FORWARD	ON
2	Α	4.500	1.280	1175.000	-120	FORWARD	ON
2	В	5.000	1.280	1175.000	0	FORWARD	ON
2	С	5.500	1.280	1175.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -10.00 Maximum horizontal distance (m) = 15.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-0.09	104.22
0	5.09	104.22
1	-0.37	34.57
1	5.37	34.57

Software by - www.elek.com

Scenario 1a

ELEK Cable High Voltage V7.0

29-03-2025, 02:04 am

Magnetic Field Intensity Calculations

Installation Data

Installation method = Buried Relative soil permeability = 1.00

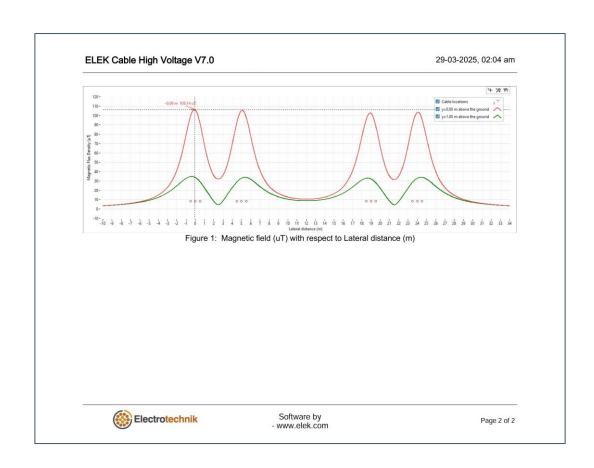
Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-0.500	1.273	1194.000	-120	FORWARD	ON
1	В	0.000	1.273	1194.000	0	FORWARD	ON
1	С	0.500	1.273	1194.000	120	FORWARD	ON
2	Α	4.500	1.273	1194.000	-120	FORWARD	ON
2	В	5.000	1.273	1194.000	0	FORWARD	ON
2	С	5.500	1.273	1194.000	120	FORWARD	ON
3	Α	18.500	1.280	1175.000	-120	FORWARD	ON
3	В	19.000	1.280	1175.000	0	FORWARD	ON
3	С	19.500	1.280	1175.000	120	FORWARD	ON
4	Α	23.500	1.280	1175.000	-120	FORWARD	ON
4	В	24.000	1.280	1175.000	0	FORWARD	ON
4	С	24.500	1.280	1175.000	120	FORWARD	ON

Measurement Data

Minimum horizontal distance (m) = -10.00 Maximum horizontal distance (m) = 34.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results


	Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
	0	-0.09	106.14
[1	-0.41	34.67

Software by - www.elek.com

Page 1 of 2

59

Scenario 2

ELEK Cable High Voltage V7.0

29-03-2025, 01:48 am

Magnetic Field Intensity Calculations

Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-0.500	1.273	1105.000	-120	FORWARD	ON
1	В	0.000	1.273	1105.000	0	FORWARD	ON
1	С	0.500	1.273	1105.000	120	FORWARD	ON
2	Α	4.500	1.273	1105.000	-120	FORWARD	ON
2	В	5.000	1.273	1105.000	0	FORWARD	ON
2	С	5.500	1.273	1105.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -10.00 Maximum horizontal distance (m) = 15.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-0.08	99.02
0	5.08	99.02
1	-0.37	32.7
1	5.37	32.7

Software by - www.elek.com

Scenario 2a

ELEK Cable High Voltage V7.0

29-03-2025, 01:53 am

Magnetic Field Intensity Calculations

Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-0.500	1.273	1194.000	-120	FORWARD	ON
1	В	0.000	1.273	1194.000	0	FORWARD	ON
1	С	0.500	1.273	1194.000	120	FORWARD	ON
2	Α	4.500	1.273	1194.000	-120	FORWARD	ON
2	В	5.000	1.273	1194.000	0	FORWARD	ON
2	С	5.500	1.273	1194.000	120	FORWARD	ON
3	Α	18.500	1.273	1105.000	-120	FORWARD	ON
3	В	19.000	1.273	1105.000	0	FORWARD	ON
3	С	19.500	1.273	1105.000	120	FORWARD	ON
4	Α	23.500	1.273	1105.000	-120	FORWARD	ON
4	В	24.000	1.273	1105.000	0	FORWARD	ON
4	С	24.500	1.273	1105.000	120	FORWARD	ON

Measurement Data

Minimum horizontal distance (m) = -10.00 Maximum horizontal distance (m) = 34.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-0.09	106.2
1	-0.41	34.71

Software by - www.elek.com

Scenario 3

ELEK Cable High Voltage V7.0

29-03-2025, 01:44 am

Magnetic Field Intensity Calculations

Installation Data

Installation method = Buried Relative soil permeability = 1.00

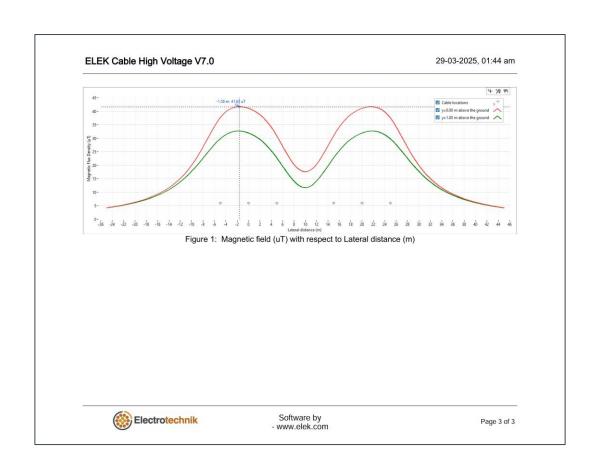
Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-5.000	5.179	1175.000	-120	FORWARD	ON
1	В	0.000	5.179	1175.000	0	FORWARD	ON
1	С	5.000	5.179	1175.000	120	FORWARD	ON
2	Α	15.000	5.179	1175.000	-120	FORWARD	ON
2	В	20.000	5.179	1175.000	0	FORWARD	ON
2	С	25.000	5.179	1175.000	120	FORWARD	ON

Measurement Data

Minimum horizontal distance (m) = -20.00 Maximum horizontal distance (m) = 40.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results


Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-1.59	41.63
0	-1.58	41.63
0	-1.57	41.63
0	21.57	41.63
0	21.58	41.63
0	21.59	41.63
1	-1.78	32.61
1	-1.77	32.61
1	-1.76	32.61
1	21.76	32.61
1	21.77	32.61
1	21.78	32.61

Software by - www.elek.com

Page 1 of 3

Company Number: 13304409

Scenario 3a

ELEK Cable High Voltage V7.0

29-03-2025, 02:01 am

Magnetic Field Intensity Calculations

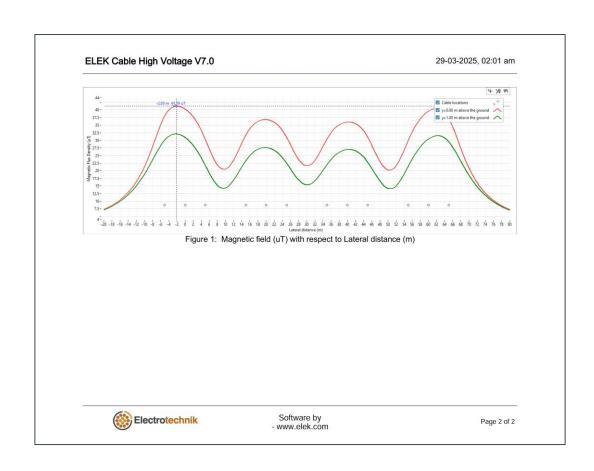
Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-5.000	5.173	1194.000	-120	FORWARD	ON
1	В	0.000	5.173	1194.000	0	FORWARD	ON
1	С	5.000	5.173	1194.000	120	FORWARD	ON
2	Α	15.000	5.173	1194.000	-120	FORWARD	ON
2	В	20.000	5.173	1194.000	0	FORWARD	ON
2	С	25.000	5.173	1194.000	120	FORWARD	ON
3	Α	35.000	5.179	1175.000	-120	FORWARD	ON
3	В	40.000	5.179	1175.000	0	FORWARD	ON
3	С	45.000	5.179	1175.000	120	FORWARD	ON
4	Α	55.000	5.179	1175.000	-120	FORWARD	ON
4	В	60.000	5.179	1175.000	0	FORWARD	ON
4	С	65.000	5.179	1175.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -20.00 Maximum horizontal distance (m) = 80.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-2.03	41.19
0	-2.02	41.19
1	-2.3	32.09
1	-2.29	32.09
1	-2.28	32.09

Software by - www.elek.com

Scenario 4

ELEK Cable High Voltage V7.0

29-03-2025, 12:59 pm

Magnetic Field Intensity Calculations

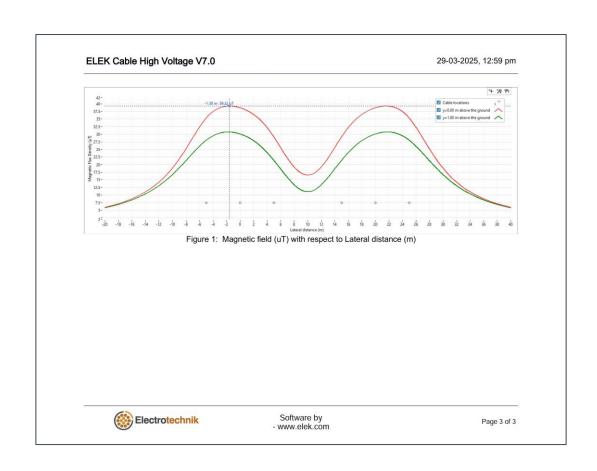
Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-5.000	5.173	1105.000	-120	FORWARD	ON
1	В	0.000	5.173	1105.000	0	FORWARD	ON
1	С	5.000	5.173	1105.000	120	FORWARD	ON
2	Α	15.000	5.173	1105.000	-120	FORWARD	ON
2	В	20.000	5.173	1105.000	0	FORWARD	ON
2	С	25.000	5.173	1105.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -20.00 Maximum horizontal distance (m) = 40.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-1.59	39.21
0	-1.58	39.21
0	-1.57	39.21
0	21.57	39.21
0	21.58	39.21
0	21.59	39.21
1	-1.78	30.71
1	-1.77	30.71
1	-1.76	30.71
1	21.76	30.71
1	21.77	30.71
1	21.78	30.71

Software by - www.elek.com

Scenario 4a

ELEK Cable High Voltage V7.0

29-03-2025, 01:06 pm

Magnetic Field Intensity Calculations

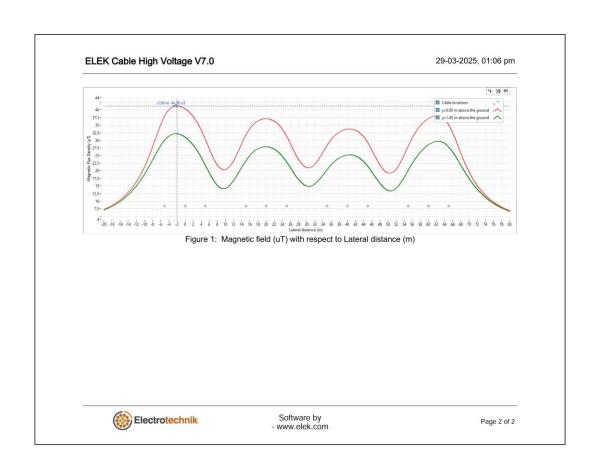
Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-5.000	5.173	1194.000	-120	FORWARD	ON
1	В	0.000	5.173	1194.000	0	FORWARD	ON
1	С	5.000	5.173	1194.000	120	FORWARD	ON
2	Α	15.000	5.173	1194.000	-120	FORWARD	ON
2	В	20.000	5.173	1194.000	0	FORWARD	ON
2	С	25.000	5.173	1194.000	120	FORWARD	ON
3	Α	35.000	5.173	1105.000	-120	FORWARD	ON
3	В	40.000	5.173	1105.000	0	FORWARD	ON
3	С	45.000	5.173	1105.000	120	FORWARD	ON
4	Α	55.000	5.173	1105.000	-120	FORWARD	ON
4	В	60.000	5.173	1105.000	0	FORWARD	ON
4	С	65.000	5.173	1105.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -20.00 Maximum horizontal distance (m) = 80.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-2	41.26
1	-2.26	32.15
1	-2.25	32.15

Software by - www.elek.com

ELEK Cable High Voltage V7.0

29-03-2025, 01:10 pm

Magnetic Field Intensity Calculations

Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-10.000	20.180	1175.000	-120	FORWARD	ON
1	В	0.000	20.180	1175.000	0	FORWARD	ON
1	С	10.000	20.180	1175.000	120	FORWARD	ON
2	Α	20.000	20.180	1175.000	-120	FORWARD	ON
2	В	30.000	20.180	1175.000	0	FORWARD	ON
2	С	40.000	20.180	1175.000	120	FORWARD	ON

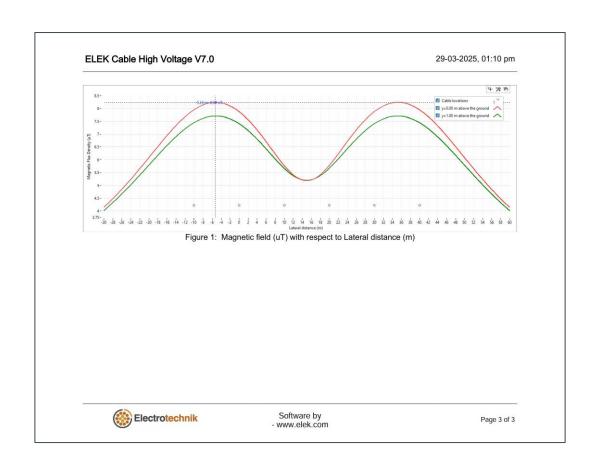
Measurement Data

Minimum horizontal distance (m) = -30.00 Maximum horizontal distance (m) = 60.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-5.26	8.24
0	-5.25	8.24
0	-5.24	8.24
0	-5.23	8.24
0	-5.22	8.24
0	35.22	8.24
0	35.23	8.24
0	35.24	8.24
0	35.25	8.24
0	35.26	8.24
1	-5.22	7.71
1	-5.21	7.71
1	-5.2	7.71

Software by - www.elek.com


29-03-2025, 01:10 pm

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
1	-5.19	7.71
1	-5.18	7.71
1	-5.17	7.71
1	-5.16	7.71
1	-5.15	7.71
1	-5.14	7.71
1	-5.13	7.71
1	-5.12	7.71
1	-5.11	7.71
1	-5.1	7.71
1	-5.09	7.71
1	-5.08	7.71
1	-5.07	7.71
1	-5.06	7.71
1	35.06	7.71
1	35.07	7.71
1	35.08	7.71
1	35.09	7.71
1	35.1	7.71
1	35.11	7.71
1	35.12	7.71
1	35.13	7.71
1	35.14	7.71
1	35.15	7.71
1	35.16	7.71
1	35.17	7.71
1	35.18	7.71
1	35.19	7.71
1	35.2	7.71
1	35.21	7.71
1	35.22	7.71

Software by - www.elek.com

Page 2 of 3

Scenario 5a

ELEK Cable High Voltage V7.0

29-03-2025, 01:17 pm

Magnetic Field Intensity Calculations

Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-10.000	20.173	1194.000	-120	FORWARD	ON
1	В	0.000	20.173	1194.000	0	FORWARD	ON
1	С	10.000	20.173	1194.000	120	FORWARD	ON
2	Α	20.000	20.173	1194.000	-120	FORWARD	ON
2	В	30.000	20.173	1194.000	0	FORWARD	ON
2	С	40.000	20.173	1194.000	120	FORWARD	ON
3	Α	50.000	20.180	1175.000	-120	FORWARD	ON
3	В	60.000	20.180	1175.000	0	FORWARD	ON
3	С	70.000	20.180	1175.000	120	FORWARD	ON
4	Α	80.000	20.180	1175.000	-120	FORWARD	ON
4	В	90.000	20.180	1175.000	0	FORWARD	ON
4	С	100.000	20.180	1175.000	120	FORWARD	ON

Measurement Data

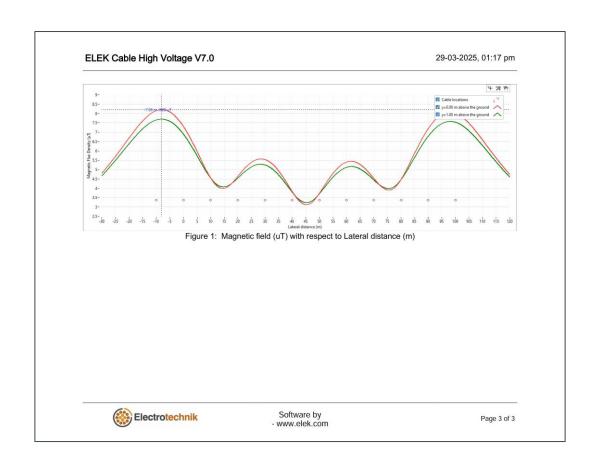
Minimum horizontal distance (m) = -30.00 Maximum horizontal distance (m) = 120.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-8.04	8.2
0	-8.03	8.2
0	-8.02	8.2
0	-8.01	8.2
0	-8	8.2
0	-7.99	8.2
0	-7.98	8.2

Software by - www.elek.com

29-03-2025, 01:17 pm


Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)		
0	-7.97	8.2		
0	-7.96	8.2		
0	-7.95	8.2		
0	-7.94	8.2		
0	-7.93	8.2		
0	-7.92	8.2		
0	-7.91	8.2		
0	-7.9	8.2		
0	-7.89	8.2		
1	-8.14	7.69		
1	-8.13	7.69		
1	-8.12	7.69		
1	-8.11	7.69		
1	-8.1	7.69		
1	-8.09	7.69		
1	-8.08	7.69		
1	-8.07	7.69		
1	-8.06	7.69		
1	-8.05	7.69		
1	-8.04	7.69		
1	-8.03	7.69		
1	-8.02	7.69		
1	-8.01	7.69		
1	-8	7.69		
1	-7.99	7.69		
1	-7.98	7.69		

Software by - www.elek.com

Page 2 of 3

77

ELEK Cable High Voltage V7.0

29-03-2025, 01:19 pm

Magnetic Field Intensity Calculations

Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-10.000	20.173	1105.000	-120	FORWARD	ON
1	В	0.000	20.173	1105.000	0	FORWARD	ON
1	С	10.000	20.173	1105.000	120	FORWARD	ON
2	Α	20.000	20.173	1105.000	-120	FORWARD	ON
2	В	30.000	20.173	1105.000	0	FORWARD	ON
2	С	40.000	20.173	1105.000	120	FORWARD	ON

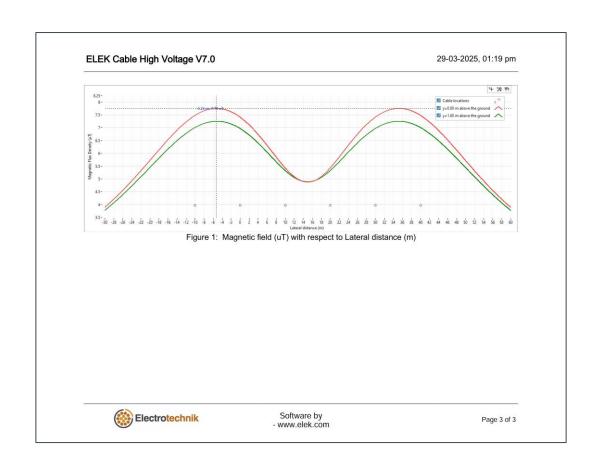
Measurement Data

Minimum horizontal distance (m) = -30.00 Maximum horizontal distance (m) = 60.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-5.27	7.75
0	-5.26	7.75
0	-5.25	7.75
0	-5.24	7.75
0	-5.23	7.75
0	-5.22	7.75
0	-5.21	7.75
0	35.21	7.75
0	35.22	7.75
0	35.23	7.75
0	35.24	7.75
0	35.25	7.75
0	35.26	7.75

Software by - www.elek.com


29-03-2025, 01:19 pm

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)	
0	35.27	7.75	
1	-5.23	7.25	
1	-5.22	7.25	
1	-5.21	7.25	
1	-5.2	7.25	
1	-5.19	7.25	
1	-5.18	7.25	
1	-5.17	7.25	
1	-5.16	7.25	
1	-5.15	7.25	
1	-5.14	7.25	
1	-5.13	7.25	
1	-5.12	7.25	
1	-5.11	7.25	
1	-5.1	7.25	
1	-5.09	7.25	
1	-5.08	7.25	
1	-5.07	7.25	
1	-5.06	7.25	
1	-5.05	7.25	
1	35.05	7.25	
1	35.06	7.25	
1	35.07	7.25	
1	35.08	7.25	
1	35.09	7.25	
1	35.1	7.25	
1	35.11	7.25	
1	35.12	7.25	
1	35.13	7.25	
1	35.14	7.25	
1	35.15	7.25	
1	35.16	7.25	
1	35.17	7.25	
1	35.18	7.25	
1	35.19	7.25	
1	35.2	7.25	
1	35.21	7.25	
1	35.22	7.25	
1	35.23	7.25	

Software by - www.elek.com

Page 2 of 3

Scenario 6a

ELEK Cable High Voltage V7.0

29-03-2025, 01:26 pm

Magnetic Field Intensity Calculations

Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-10.000	20.173	1194.000	-120	FORWARD	ON
1	В	0.000	20.173	1194.000	0	FORWARD	ON
1	С	10.000	20.173	1194.000	120	FORWARD	ON
2	Α	20.000	20.173	1194.000	-120	FORWARD	ON
2	В	30.000	20.173	1194.000	0	FORWARD	ON
2	С	40.000	20.173	1194.000	120	FORWARD	ON
3	Α	50.000	20.173	1105.000	-120	FORWARD	ON
3	В	60.000	20.173	1105.000	0	FORWARD	ON
3	С	70.000	20.173	1105.000	120	FORWARD	ON
4	Α	80.000	20.173	1105.000	-120	FORWARD	ON
4	В	90.000	20.173	1105.000	0	FORWARD	ON
4	С	100.000	20.173	1105.000	120	FORWARD	ON

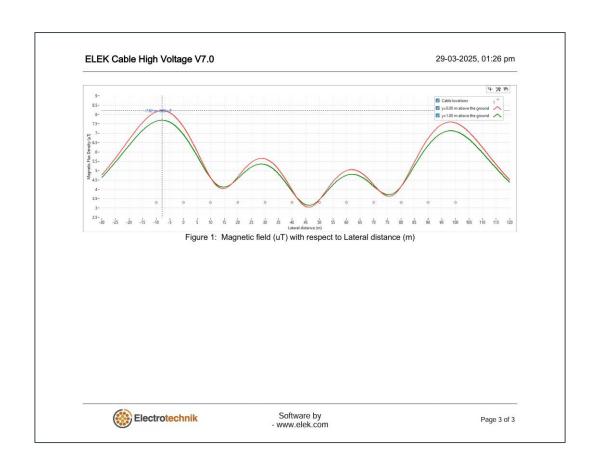
Measurement Data

Minimum horizontal distance (m) = -30.00 Maximum horizontal distance (m) = 120.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-7.87	8.2
0	-7.86	8.2
0	-7.85	8.2
0	-7.84	8.2
0	-7.83	8.2
0	-7.82	8.2
0	-7.81	8.2

Software by - www.elek.com


29-03-2025, 01:26 pm

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)
0	-7.8	8.2
0	-7.79	8.2
0	-7.78	8.2
0	-7.77	8.2
1	-7.92	7.69
1	-7.91	7.69
1	-7.9	7.69

Software by - www.elek.com

Page 2 of 3

ELEK Cable High Voltage V7.0

28-03-2025, 08:19 pm

Magnetic Field Intensity Calculations

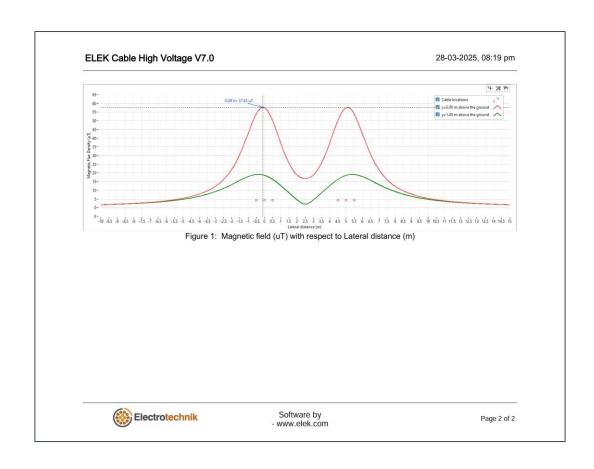
Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-0.500	1.276	646.000	-120	FORWARD	ON
1	В	0.000	1.276	646.000	0	FORWARD	ON
1	С	0.500	1.276	646.000	120	FORWARD	ON
2	Α	4.500	1.276	646.000	-120	FORWARD	ON
2	В	5.000	1.276	646.000	0	FORWARD	ON
2	С	5.500	1.276	646.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -10.00 Maximum horizontal distance (m) = 15.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)	
0	-0.09	57.63	
0	-0.08	57.63	
0	5.08	57.63	
0	5.09	57.63	
1	-0.37	19.07	
1	5.37	19.07	

Software by - www.elek.com

ELEK Cable High Voltage V7.0

28-03-2025, 09:55 pm

Magnetic Field Intensity Calculations

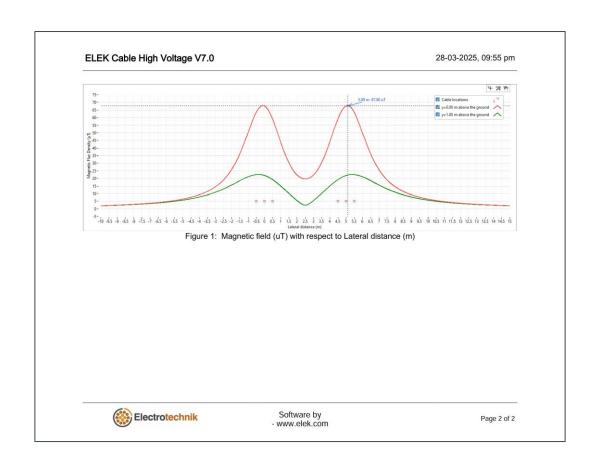
Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-0.500	1.276	760.000	-120	FORWARD	ON
1	В	0.000	1.276	760.000	0	FORWARD	ON
1	С	0.500	1.276	760.000	120	FORWARD	ON
2	Α	4.500	1.276	760.000	-120	FORWARD	ON
2	В	5.000	1.276	760.000	0	FORWARD	ON
2	С	5.500	1.276	760.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -10.00 Maximum horizontal distance (m) = 15.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)	
0	-0.09	67.8	
0	-0.08	67.8	
0	5.08	67.8	
0	5.09	67.8	
1	-0.37	22.43	
1	5.37	22.43	

Software by - www.elek.com

ELEK Cable High Voltage V7.0

29-03-2025, 01:29 pm

Magnetic Field Intensity Calculations

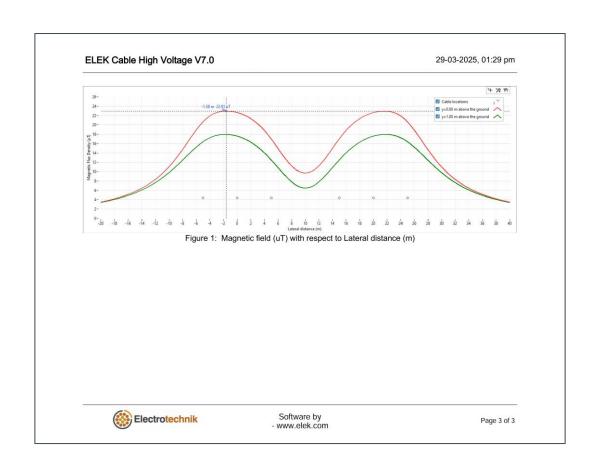
Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-5.000	5.176	646.000	-120	FORWARD	ON
1	В	0.000	5.176	646.000	0	FORWARD	ON
1	С	5.000	5.176	646.000	120	FORWARD	ON
2	Α	15.000	5.176	646.000	-120	FORWARD	ON
2	В	20.000	5.176	646.000	0	FORWARD	ON
2	С	25.000	5.176	646.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -20.00 Maximum horizontal distance (m) = 40.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)	
0	-1.58	22.91	
0	21.58	22.91	
1	-1.79	17.94	
1	-1.78	17.94	
1	-1.77	17.94	
1	-1.76	17.94	
1	-1.75	17.94	
1	21.75	17.94	
1	21.76	17.94	
1	21.77	17.94	
1	21.78	17.94	
1	21.79	17.94	

Software by - www.elek.com

ELEK Cable High Voltage V7.0

29-03-2025, 01:32 pm

Magnetic Field Intensity Calculations

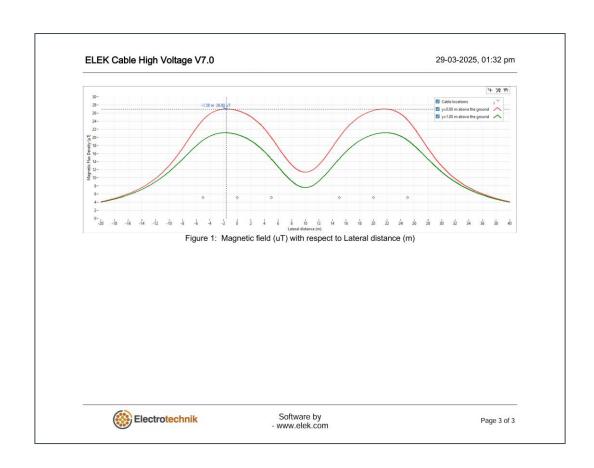
Installation Data

Installation method = Buried Relative soil permeability = 1.00

Cable Data

Circuit Number	Phase	X Position (m)	Y Position (m)	Current (A)	Angle (deg.)	Direction	On / Off
1	Α	-5.000	5.176	760.000	-120	FORWARD	ON
1	В	0.000	5.176	760.000	0	FORWARD	ON
1	С	5.000	5.176	760.000	120	FORWARD	ON
2	Α	15.000	5.176	760.000	-120	FORWARD	ON
2	В	20.000	5.176	760.000	0	FORWARD	ON
2	С	25.000	5.176	760.000	120	FORWARD	ON

Measurement Data


Minimum horizontal distance (m) = -20.00 Maximum horizontal distance (m) = 40.00 Horizontal step size (m) = 0.01 Minimum vertical distance (m) = 0.00 Maximum vertical distance (m) = 1.00 Vertical step size (m) = 1.00

Results

Height above the ground, Y (m)	Lateral distance, X (m)	Maximum field intensity, B (uT)	
0	-1.6	26.95	
0	-1.59	26.95	
0	-1.58	26.95	
0	-1.57	26.95	
0	-1.56	26.95	
0	21.56	26.95	
0	21.57	26.95	
0	21.58	26.95	
0	21.59	26.95	
0	21.6	26.95	
1	-1.78	21.1	
1	-1.77	21.1	
1	21.77	21.1	

Software by - www.elek.com

End of Report

HARNESSING THE POWER OF NORTH SEA WIND

North Falls Offshore Wind Farm Limited

A joint venture company owned equally by SSE Renewables and RWE.

To contact please email contact@northfallsoffshore.com

© 2024 All Rights Reserved